Modification of Ohnaka back diffusion equation
نویسندگان
چکیده
منابع مشابه
Solutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملModification of the Peng-Robinson Equation of State (Generalization)
A modification of Peng-Robinson equation is described wherein in the parameter b is expressed as a linear function of temperature. The modified equation is then applied to a series of light hydrocarbons and refrigerants, and predicted values for vapor pressure, saturated vapor volume, saturated liquid volume and the heat of evaporation are compared with the corresponding experimental data. ...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملsolutions of diffusion equation for point defects
an analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the robin-type boundary conditions. the distributions of point defects for different migration lengths of defects have been calculated. the exact analytical solution was used to verify the approximate numerical solutio...
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2016
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/117/1/012021